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J. Phys. A: Math. Gen. 23 (1990) 3453-3553. Printed in the U K  

On similarity reductions of the three-wave resonant system to 
the Painleve equations 

A V Kitaev 
Department of Mathematics, Leningrad Institute of Aircraft Instrument Engineering, 
Gerzen 67, Leningrad, 190000, USSR 

Received 28 December 1988 

Abstract. The availability of more general similarity solutions than obtained previously is 
shown. Representations of the earlier known general complex similarity solutions in terms 
of PainlevC V and especially VI functions are given. Necessary comments and corrections 
of some published results regarding the Painlev6 VI equation theory are made. A new 
Backlund transformation for the PainlevC VI equation is obtained. 

Consider the three-wave resonant system: 

U!,, + C / U / , ~  + dlul,?, = i u T u t  l s l , j , k c 3  l # j # k  I Z k .  (1) 
The constants cI and d , ,  which represent corresponding group velocities, are assumed 
to be real and the equations themselves are put into order according to the condition 

0 < c ,  < c2 < c3 # 

The asterisks denote complex conjugation, and subscripts before the comma represent 
the number of the wavepacket and subscripts after the comma represent partial 
differentiation. 

Similarity reductions of the system (1) were studied in [l-31. Where three such 
reductions (1-111) were found. For the convenience of the reader they are listed below. 
However, there is a difference from the cited works. In the present paper more general 
reductions are written. Each one differs from the corresponding reduction given in 
[l-31 owing to the presence of additional real constants Pk ( k  = 1 ,2 ,3 )  related by the 
following condition: 

p 1 + p 2  + p3 = 0. (2) 
Besides that, we correct a mistake in [3] and, in case 111, use more convenient variables 
than were used in [l]. The reductions are as follows. 

Reduction I. 

y ,  =x-f(c,+Cj)f Y 2  = Y -i(d2 - d3) t Y3 = YlY l3 -  Y2Y2 

0305-4470/90/153543 + 11$03.50 @ 1990 IOP Publishing Ltd 3543 



3544 A V Kitaeu 

u 3 =  a3 exp[(a + iP3)(y3-y l ) lu3(~)  a3= EU2.  

Here QI is an arbitrary real constant and the functions ~ ~ ( 7 )  satisfy the system of 
nonlinear ordinary differential equations (ODE):  

i 
uI + U ;  = - i u f u f  U1 us * * Eo=sgn(a).  (3) 01 U 2  

is 
2QIT 7 

* * 
7 

iP1 - 

In the case pl  = ~t in variables z, w k ( z ) :  w k ( z )  = 2uk(T), T = z2 the system ( 3 )  ( E ~ =  1) 
take the form 

( 4 )  
1 i 

w ;  = - i zwfwf  w ;  = - w t w f  w ; = - -  w y w ; .  
Z Z 

Purely imaginary solutions of the system ( 4 )  

wj = iGj Im Gj=O j = 1 , 2 , 3  

as was shown in [3], can be represented in terms of the third PainlevC equation 

G3 = cl[;-$(4’+ 4-2)]l1* G2 = -* 

In terms of a new variable cp(z): 42= -exp( -icp(z)), these formulae may be rewirtten 
as follows: 

( 6 )  2 2 

Real solutions of equation ( 6 )  take part in the description of the solutions ( 5 )  of the 
system (4) .  Information concerning these solutions can be found in [4-61. 

It turns out that general complex solutions of the system (4) can also be represented 
in terms of the third PainlevC equation. To show this, we introduce the notation 

cp 3,=*C,s in- .  cp (zcp’)’+ zC: sin cp = o $3 = c, cos - 

wk = P k  exp(icpk) k = I, 2,3 $ = PI + cp2+ V3.  

Then from system ( 4 )  we obtain 

p : + p : =  c: PIP2P3 cos * = c2 (7) 
where C: and C2 are the constants of integration. In the new notation the system ( 4 )  
with the help of ( 7 )  may be rewritten in the form 

(9) 
cz p3p; = -- tan J, c2 

p2pi  =-tan 4 pip{ = -zC2 tan I) 
Z Z 

By means of the transformation 
- 2  

t In this case p2 = - p ,  does not vanish in general (see (2 ) ) .  
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equation (10) can be brought into the standard form of the PainlevC V equation 

This particular case of the fifth PainlevC equation is connected by an invertible 
transformation to the third PainlevC equation (see, for instance, [7,8]). Information 
about the solutions of (12) is given in [8,9]t. Given a solution w < 0 of equation (12) 
one may construct a solution of the system (4) in the following way. Equation (1 1) 
yields p ; ,  then the first equation in (7 )  gives p i ,  and the second equation in (9) yields 
tan I). When tan I) has been obtained one can find cos' 9 and from the second equation 
in (7) one obtains p : .  Finally, one can obtain phases (Pk by integration of (8). 

Reduction II. 

y1 = x - f (  Cl + c*+ c3)t 

U 

j72 = y - :( d ,  + d2 + d3) t 

[(-2dl+ d2+ d3)y1+ ( 2 ~ 1 -  ~ 2 -  c ~ ) F * ] / A  

Here A is defined by the same formula as in reduction I. 

The functions 6k(i) satisfy the following nonlinear system of ODE: 

S 3 + ; S ; =  -ST@ iP3 

i- I 
-- 

i ( i - 1 ) S i + i P 2 ( i - 1 ) S 2 =  -@wf. 

In the case p2 = P3 = 0 the system (13) was obtained in [ 11. Real solutions of the system 
Im 6, = 0, as was also shown in [ 11, are expressible in terms of solutions of the sixth 
PainlevC equation (PVI). It turns out that not only real but general complex solutions 
of the system (13) ( p 2  = p3 = 0) can be expressed in such a way. This fact is the main 
result of the paper. It will be proved after we deal with the similarity reduction 111. 

Reduction III.  In this case it is assumed that 

dl = d2 d3 = 0. 

The similarity reduction is 

t The results concerning real solutions are also included. 
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where the functions $ k ( 5 )  satisfy the system of ODE 

k # l # j  k # j  1 c 1, j, k c 3. 

Such a system, when Pk = 0, was obtained in [3], where it was shown that for purely 
imaginary I,!J~ the system (14) ( p k  = 0) reduces to PVI. 

Herein we shall show that in the case P k  = 0 the system (14) reduces to PVI in the 

First of all, define the new variables 
general complex case. 

+1(1) = i a , ( ~ ~ - c ~ ) ~ ~ ~ G ~ ( ~ )  ~ / ~ ~ ( l ) = i a ~ ( c ~ - c , )  zz zG2(2) ip Aip 

1 = J(c3 - c l ) (  C2 - c l )  a2 = - J ( c 3  - c2)(c2 - c l )  a , = ~ ) ( c 3 - c , ) .  

In new variables, the system (14) takes the form 

( 2 - 1 ) G i  = G f G f  

2(2- 1)G; + ip2(2 - 1 ) G 2  = 6:;;. 
2(2- I)$; - ip3& = ( 1  - 2)$fGT 

(15 )  

To simplify the notation, we write z instead of 2, i?, and w instead of $, 6. Moreover, 
put P k  = 0. As a result we have the following system: 

( z - l ) w { =  w;w; zwj= -wTwf z(z- l )w;= - - E W f W T .  (16) 
The case E = -1  correspond to the system (15), and E = 1 corresponds to the system (13). 

Thus, our goal is to show that general complex solutions of the system (16) may 
be presented in terms of PVI. 

In analogy to what was done in the discussion of reduction I, we introduce the 
notation 

b k  = P k  exp(iqoi,) k = l , 2 , 3  * = 4 0 1  + 402+ 403. 

There are two integrals of the system (16) 

p:+EP:+p:= c, PIP2P3 sin $ = c2. 

Using (17) the system (16) can be rewritten as follows: 

cot * 2 c2 cot * p i  = -- 2 c2 pi = -- 2 c2 p’l=-cot* 
z - 1  z(z-1)  Z 

(p;+- -  PI EPI(P:-Cl) - c: )2(-)2 

= P : { ( - ) 2 + E [ ( P 1 ) 2 + p : ( 2 - - ) 2  2 ( z  P:  - - Cl 1 )  c: 1). 
2 - 1 2(z - 1 ) 2  p: (z  - 1)2 
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For a given general solution ( p l  > 0) of equation (20), a general solution of the system 
(16) can be easily reconstructed. There is an indefiniteness in the case C2 = 0 (see (17), 
(19)). It is to be uncovered by means of the second equation in (17); in other words, 
one has to make the following change in (19): 

c, cot * - PIP2P3 .  

In equations (18) and (20) in this case simply put C, = 0. 

has to introduce new variables 
The case C2 = 0 was considered in [3] ( E  = -1 )  and in [l]  ( E  = 1 ) .  In this case one 

Pl(Z) = 6 4 ( l )  z = 4&(2& - 1 - l ) - ’ .  (21) 

Then for function $(,$) we obtain the particular case of equation (A1.2) (see appendix 
1) .  Equation (A1.2) in turn is equivalent to PVI. 

The case C2 it 0 is not so trivial, as after substitution of (21) into (20) the resulting 
equation contains two more terms proportional to C: than appear in (A1.2). These 
terms cannot be removed by a known transformation. 

To cope with this case we rewrite the system (16) in a slightly different form: 

p3 = Cl -PI - ep2 (22) 

The pk are defined in the last equation of (18 ) .  Now, having substituted formula 
(22) into the subrooting expression (23), we introduce a new variable T :  

J--EP1 p: + Pl(C1 - PI)P2 - c: = P2 T +  ic2.  (24) 

In  (24) it is easy to recognise an Euler substitution well known in the theory of 
integration. It is necessary to mention that the situation we have differs from the 
standard one, as the quantity p1 is not a constant, but a function of z. 

Define another variable U :  

U = - E P ~  - T2. 

Up, = 2iC2T + E (  U + T 2 ) [  C, + E (  U + T’)] 

(25) 

In new variables we have the following expression for p,: 

(26) 

and the system (22), (23) may be rewritten as follows: 

U’=-- z - 1  - 2 E  ( iC2+7(&C,+2T2)+-  2 z - 1  Z TU) 

T‘ = --E 
U ( z  - 1 )  Z 

System (27), (28) appears to be equivalent to equation (A1.2). To see this, U has to 
be obtained from equation (28) and substituted into equation (27). Then we find that 
the function 
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satisfies equation (A1.2), and the coefficients A, p, v, k2 of this equation are given in 
terms of the parameters C,, C2 in the following way: 

A = &  p k 2  = 32iC2 (29) 

+ - + 2 & C , = v -  
k2 k2 k p  
4 4 4  

--=- 

It is evident that multiplying the first equality in (30) by k and using the second 
equation in (29), we obtain a cubic equation which defines k if C, and C2 are given. 
Further, with the help of (29) we shall find p and, from the second equality in (30), 
find v. 

The choice of the sign (upper/lower) in (30) is arbitrary, but still the same in both 
formulae. 

Appendix 1 contains the formulae (A1 21)-( Al.7), which present one-to-one corre- 
spondance between solutions of equation (A1.2) and PVI. Using the formulae (A1.3), 
(A1.4) of appendix 1, it is easy to express C, and C,  directly in terms of the coefficients 
of PVI. 

Note that asymptotic properties of PVI were studied in [ 101. Besides that, informa- 
tion about partial solutions may be found in appendix l ,  and also in [ l l] .  

In conclusion, it is necessary to mention that the transformation of equation (20) 
into equation (A1.2) found here allows one to obtain the new transformation for PVI. 
This transformation can be called the quadratic transformation in analogy with corre- 
sponding one for certain hypergeometric equations. Details will be published else- 
where. 

Appendix 1. Comments on partial solutions 

The canonical form of PVI is as follows [12]: 

WlI = I (1 + - 1 +-) 1 (wy- (-+-+-) 1 1  1 wt 
2 w w-1 w-z z z - 1  w-z 

(Al . l )  

The following theorem and the method it provides for obtaining Backlund transfor- 
mations were given in [13], see also [14]. To tell the truth, formulae (A1.5)-(A1.7) 
(see below) are equivalent to the system of equations obtained earlier in [15]. But in 
[15] they were not used to derive Backlund transformations. 

Theorem [13]. Let us consider w(z, a, p, 'y, 6)-a solution of equation (Al.l), and 
+(z, A, p, v, k)-a solution of the following equation: 

w(w-l)(w-z)  pz y(z-1)  6z(z-1) 
a+-+- + [ w2 (w-1)2 ( w - z ) 2  

+ 
z2(z-1)2 

[z (z-  l ) i2]2= 'P2A 

3 ~ - 1  2 4 1  + ( p / 2 ) 1 -  k 2 4  
+'+ z(z-1)2 

sz = + ' I +  

2z(z-1) 
1'- k2+2 

A = ( + ' ) 2 +  P I =  # 2 + -  ++ V 
2 z(z- l )2  

(Al.2) 

W = ( z + l )  ++- +-(z-1)  ( 3: 
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where the parameters A, p, v,  k are defined by the formulae 

k = m - G - l  A=d'?@+& (A1.3) 

(A1.4) 

In formulae (A1.3) the branches of the roots are chosen arbitrary, but are the same in 
both formulae. 

Assume A # 0, A # 0, the formulae 

4 - ( z -  1 ) 2  - 
Z 

(A1.5) 

(A1.6) 

W '  A - k - 1  ( A + k + l ) z  A z + l  1 p (A1.7) 

provide a one-to-one correspondance between solutions of equations ( A l . l )  and (A1.2). 

_ -  --....-- C#l=z-+ n' + 
w 2(z-1)  2 ( z + l ) w  2 z - 1  2 4 

Remark. The works [ 13, 141 instead ofthe conditions A # 0, A # 0 contain the conditions 
k # 0 and 4 # 0 when Y = 0. In [ 1 I]  it is correctly mentioned that the restriction k # O t  
is unnecessary, and instead of C$ # 0 when v = 0, we should have the more general 
condition that A # 0. The condition A # 0 is omitted everywhere. However, that is a 
necessary condition, since on the one hand if A = 0, then equation (A1.2), in agreement 
with the identity 

A 2 4 ' 0  = A' + - 3 2 - 1  
z (z -1)  

is satisfied automatically, but on the other hand the condition A = 0 is incompatible 
with the formulae (AlS)-(A1.7),  except for the case when 4 = constant and satisfies 

12=  k24'.  (A1.8) 

The condition (A1.8) needs separate verification, as it appears not only from the 
condition A Z O ,  but also in obtaining equation (A1.2), when it is necessary to reduce 
the multiplier 1 2 -  k 2 4 2 .  The result of this verification depends on k. If k # 0, then 
w = 1 corresponds to a solution 4 of the equation I = k4,  and to a solution of the 
equation I = - k 4  - w = z. Equation (Al .1)  is undefined if w = 1 ,  z. 

Let us now take k = 0. Define 4o as a solution of the quadratic equation 

F 
2 

I = 4; + - do + v = 0. 

Having substituted 4o in the left-hand side of (A1.7), we obtain 

A z + l  1 
2 2 - 1  2 
- -+-+iFD 

(Al.9) 

i. In the case k = 0, I.L is arbitrary. 
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Equation (A1.9) defines a one-parameter family of solutions of equation (Al . l )  with 
the following conditions on coefficients 

In the last equality we assumed that there is the choice of branches of the square roots 
& and 

A general solution of (A1.9) when A # 1, expressible in terms of the general solution 
x of a hypergeometric equation, is 

y+C3=; d ‘ 3 p & = 1 .  

for which it is true. 

(A1.lO) 

Z( z - 1 ) ~ ”  + ( 1 + 6 - v-) ( z - 1 )x’ - 4 5  dF%x = 0. (Al .  11) 
Let us consider now the case A = 0 .  It is the consequence of the proof of the 

theorem (see [ 13, 141) that a separate discussion is required for the special case 4 = 0 
when v = 0. Similarly as was done to obtain (A1.9), we prove that the equation? 

zw‘+- 
z - 1  z - 1  2 2 - 1  2 4 

(Al.12) 

defines a one-parameter family of solutions of (A1.1). When 6 f 0 this equation is 
expressible in terms of a general solution of the hypergeometric equation by the same 
formula (Al.lO), in which x satisfies not ( A l . l l ) ,  but the following equation: 

Note that in the case k = 0 the equations (A1.9) and (A1.12) coincide. One-parameter 
solutions of (A1.12) were mentioned earlier in [ 151. 

If A = 0, 4 # 0 the latter approach is of no use. If 4 # 0 satisfies the equation A = 0, 
then it also satisfies equation (A1.2) in which A = k +  1. These solutions of (A1.2) are 
assumed to correspond to w = W. Nevertheless these solutions may be used to generate 
one-parameter families of solutions of (A1.1). For this purpose it is necessary to 
change k +  - k  in formula (A1.6). This is possible because (A1.2) contains only k2. 
As a result we have, if 

then equation ( A l . l )  possesses a one-parameter family of solutions 

z( z - l ) X ” +  [ ( 1 + & - dF%) z - (d3p - m ) ] x ‘  - & m x  = 0. 

A = -k+  le-= 1 k # O e & #  0 

w = 1-z ( 4  +-+E) p. +- z + l  
2& 2 4  2 

where 4 a solution of the equation 

(Al .  14) 

A general solution of (A1.14) is expressible in terms of a general solution x of the 
hypergeometric equation 

z(z - 1)x”+ [( 1 + & - d F Z ) z  - (1 --dF%)]x’ (Al .  15) 

t To avoid F, one uses formulae (A1.4) in which Y = 0. 
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This solution is discussed in [ll]. But the connection with the hypergeometric 
equation (A1.13), (A1.15) was not found by the authors of [ l l] .  Instead of the method 
above, they replaced 4 in (A1.14) by (A1.17) and, having used (Al . l ) ,  obtained for 
w a nonlinear first-order ODE quadratic in w‘. Furthermore, having applied the 
Lie-point symmetry of (Al . l )  to the equation obtained by the method described above 
they obtain 

6-0. (A1.16) 

This equation was mentioned in [16]. Where it was used to define a one-parameter 
family of solutions to (Al.1) for S = 0. In [ 161, it was also shown that the transformation 
is, in fact, one of the Euler transformations, which maps (A1.16) to a linear ODE with 
four regular singular points-the Heun equation [ 171. 

Thus our formulae allow one to show a non-trivial case of the integrability of the 
Heun equation in terms of hypergeometric functions. It turns out that there is a simpler 
trick for integrating equation (A1.16) in terms of hypergeometric functions. This trick 
is simply an application of the Euler transformation, but one other than that used in 
[16]. Here we write this transformation since, judging by [ l l ] ,  it has not previously 
been published 

(z(z - 1)w’)2 = 2(w - z)2[cyw2+ ( p  + y -  a ) w  - p3 

2((YwZ+((p + 7 - a ) w - p )  = (&W+V)’ 

whence 

v 2  + 2 p  
2p+2y-2cr -2J2a;v‘ 

w =  

Thus the defined function v satisfies the equation 

2z(z - 1)v’ = * [ v 2  + 2 p  - z(2p + 2  y - 2 a  -2&v)] 

which by the following change of variables: 

v =J=7p+(-J=7p-J2a;+fi)zT22(z-l) x’ 
X 

maps into the hypergeometric equation 

z(z - l)x”+{[2T(fi-d7qr+v5z)]2- 1 T d 7 q r } x ’  
+ a ( ~ - ~ - ~ ) ( + 2 + f i - J = 7 p + v 5 z ) x = o .  

It is clear that all partial solutions described above can be iterated by Backlund 
transformations and Lie-point symmetries. Some of these transformations together 
with the set of coefficients of (Al . l ) ,  which have one-parameter families of solutions, 
are expressible in terms of hypergeometric functions, as pointed out in [ 111. 

Finally, it is necessary to mention that equation (Al . l )  for a = p = y = 0, 6 = f does 
not possess the solution, expressible in the superposition of hypergeometric and elliptic 
functions, at least in the way that was reported in [ll]. In connection with this, 
apparently, theorem 7 of [ l l ]  is wrong. 

Appendix 2. Backlund transformations 

The method of obtaining Backlund transformations for (Al.l)  by means of (A1.2) was 
given in [13]. The idea is as follows: after the transformation k +  -k, (A1.2) remains 
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the same, but formulae (A1.3)-(A1.7) change. As a result, to one solution of (A1.2) 
there correspond two different solutions w and w ,  of (Al .1) .  Formulae (A1.5)-(A1.7) 
allow one to find a connection between them, i.e. a Backlund transformation, and 
formulae (A1.3), (Al.4)-the connection of coefficients of ( A l . l )  corresponding to 
these solutions. 

As was mentioned in [ l l ] ,  (A1.2) remains the same after the transformation A + -A, 
p + -p,  4 + -4 ,  On the strength of this the new Backlund transformation of ( A l . l )  
was obtained in [ l l ] .  

The idea described above can be generalised as follows. For a given solution 
w ( z ,  a, p, y, S)  of (Al .1)  one obtains by means of (A1.7) and (A1.3), (A1.4) a solution 
of (A1.2)-4(z, A,p, v, k ) .  From 4 ( z , A ,  p, v, k )  one passes to 4 , ( z , A l , p 1 ,  v l ,  k , )  
according to the formula 

(A1.16) 

The parameters a, A , ,  p l ,  v, , k ,  are defined by explicit formulae in terms of A, p, v, 
k (see below (A2.1)-(A2.6)). 

Furthermore, one uses ( A l S ) ,  (A1.6)t to obtain w , ( z ,  a,, P I ,  y , ,  SI), where a,, P I ,  
y , ,  SI  are defined on a, A , ,  p , ,  v,, k ,  and at least on a, p, y, S by (A1.3), (A1.4). 
Thus, using a solution w of (Al . l ) ,  one obtains a new solution w ,  of this equation, 
corresponding, certainly, to a new set of coefficients. 

Parameters A, p, v, k and a, A I ,  p , ,  v,, k ,  are connected by the formulae listed 
below. Recall that they are defined by the condition that transformation (A1.16) maps 
solutions of (A1 -2) into solutions of that equation, but possibly with new coefficients 

2 4 I ( Z ,  A I ,  PI > V I  , kl)  = E ( 4 ( Z ,  A, P, v, k )  + a )  E = 1.  

a=O E A ,  = A E p l =  p 

a=O e A , = A  p , = p = o  

V a  & A l  = A  &pI = p -4a 

V a  E A ,  = A E + ,  = -4a 

k:=O k2 = +4v 

a f O  E A ,  = A  &pI = p -4a 

v , + u = a  k: = k2 + ap - 4u 2 

v, = U kl = -Ek (A2.1) 

U, = - v  k : =  k2-4v (A2.2) 

(A2.3) k: = k2 = 0 u , = v - & a p + a  2 

2 p=O v , + v = a  
(A2.4) 

(A2.5) 

(A2.6) 

Formulae (A2.6) are related to (A2.5) only. In (A2.3) and (A2.4) a is arbitrary, 
but due to the condition k ,  = 0 it does not affect the Backlund transformation, i.e. for 
any a the transformation is the same as it is in the case a = 0. In other words, the 
transformation (Al.16) with parameters (A2.3) and (A2.4) defines the same Backlund 
transformations for ( A l - l ) ,  as does transformations (A2.1) and (A2.2) in the case k ,  = 0. 

Backlund transformations of ( A l . l )  corresponding to the transformation (A1.16) 
with the parameters (A2.17) were obtained in [13] for E = 1 and in [ l l ]  for E = -1 .  
Thus, two new Backlund transformations are obtained in this paper. The first one is 
defined by formulae (A2.2), the second one by (A2.5) and (A2.6). 

t It goes without saying that all parameters in these formulae are taken with subscript 1. 
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I shall not translate this transformation into the language in which equation ( A l . l )  
is written. I advise the interested reader to do it himself as a simple exercise. It is 
quite clear that this sufficiently elementary procedure results in rather complicated 
formulae. It turns out that the ‘spectral’ interpretation of these transformations leads 
to more simple formulae. That is why a further study of these transformations is left 
for a more suitable case. 
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